This dataset includes: (1) matching and classification data, used to construct an artificial neural network (ANN) ensemble model to simulate the concentration of dimethyl sulfide (DMS) in the sea surface; (2) Using an artificial neural network model to simulate the daily sea surface concentration of global DMS from 1998 to 2017, calculate the total transport velocity (Kt) and air sea flux.
The input variables of this model include chlorophyll a, sea surface temperature (SST), mixed layer depth (MLD), nitrate, phosphate, silicate, dissolved oxygen (DO), downward shortwave radiation (DSWF), and sea surface salinity (SSS). The spatial resolution of the simulated dataset is 1 °× 1 °. The units of DMS concentration, Kt, and flux are nmol · L-1, m · S-1, and μ mol · S m-2d-1, respectively.
| collect time | 1998/01/01 - 2017/12/31 |
|---|---|
| collect place | Global |
| data size | 5.4 GiB |
| data format | mat |
| Coordinate system |
Zenodo website https://zenodo.org/records/7898187
Using artificial neural network ensemble model to simulate and predict.
The data quality is good.
This work is licensed under a
Creative
Commons Attribution 4.0 International License.
| # | title | file size |
|---|---|---|
| 1 | _ncdc_meta_.json | 4.0 KiB |
| 2 | 全球海面二甲基硫逐日网格数据集(1998-2017年).zip | 5.4 GiB |
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
©Copyright 2005-. Northwest Institute of Eco-Environment and Resources, CAS.
Donggang West Road 320, Lanzhou, Gansu, China (730000)

